121 research outputs found

    Criticality Aware Soft Error Mitigation in the Configuration Memory of SRAM based FPGA

    Full text link
    Efficient low complexity error correcting code(ECC) is considered as an effective technique for mitigation of multi-bit upset (MBU) in the configuration memory(CM)of static random access memory (SRAM) based Field Programmable Gate Array (FPGA) devices. Traditional multi-bit ECCs have large overhead and complex decoding circuit to correct adjacent multibit error. In this work, we propose a simple multi-bit ECC which uses Secure Hash Algorithm for error detection and parity based two dimensional Erasure Product Code for error correction. Present error mitigation techniques perform error correction in the CM without considering the criticality or the execution period of the tasks allocated in different portion of CM. In most of the cases, error correction is not done in the right instant, which sometimes either suspends normal system operation or wastes hardware resources for less critical tasks. In this paper,we advocate for a dynamic priority-based hardware scheduling algorithm which chooses the tasks for error correction based on their area, execution period and criticality. The proposed method has been validated in terms of overhead due to redundant bits, error correction time and system reliabilityComment: 6 pages, 8 figures, conferenc

    FixPix: Fixing Bad Pixels using Deep Learning

    Full text link
    Efficient and effective on-line detection and correction of bad pixels can improve yield and increase the expected lifetime of image sensors. This paper presents a comprehensive Deep Learning (DL) based on-line detection-correction approach, suitable for a wide range of pixel corruption rates. A confidence calibrated segmentation approach is introduced, which achieves nearly perfect bad pixel detection, even with few training samples. A computationally light-weight correction algorithm is proposed for low rates of pixel corruption, that surpasses the accuracy of traditional interpolation-based techniques. We also propose an autoencoder based image reconstruction approach which alleviates the need for prior bad pixel detection and yields promising results for high rates of pixel corruption. Unlike previous methods, which use proprietary images, we demonstrate the efficacy of the proposed methods on the open-source Samsung S7 ISP and MIT-Adobe FiveK datasets. Our approaches yield up to 99.6% detection accuracy with <0.6% false positives and corrected images within 1.5% average pixel error from 70% corrupted images

    Optical property modification of ZnO: Effect of 1.2 MeV Ar irradiation

    Full text link
    We report a systematic study on 1.2 MeV Ar^8+ irradiated ZnO by x-ray diffraction (XRD), room temperature photoluminescence (PL) and ultraviolet-visible (UV-Vis) absorption measurements. ZnO retains its wurtzite crystal structure up to maximum fluence of 5 x 10^16 ions/cm^2. Even, the width of the XRD peaks changes little with irradiation. The UV-Vis absorption spectra of the samples, unirradiated and irradiated with lowest fluence (1 x 10^15 ions/cm^2), are nearly same. However, the PL emission is largely quenched for this irradiated sample. Red shift of the absorption edge has been noticed for higher fluence. It has been found that red shift is due to at least two defect centers. The PL emission is recovered for 5 x 10^15 ions/cm^2 fluence. The sample colour is changed to orange and then to dark brown with increasing irradiation fluence. Huge resistivity decrease is observed for the sample irradiated with 5 x 10^15 ions/cm^2 fluence. Results altogether indicate the evolution of stable oxygen vacancies and zinc interstitials as dominant defects for high fluence irradiation.Comment: Accepted in Physica Sattus Solidi (c

    Technology-Circuit-Algorithm Tri-Design for Processing-in-Pixel-in-Memory (P2M)

    Full text link
    The massive amounts of data generated by camera sensors motivate data processing inside pixel arrays, i.e., at the extreme-edge. Several critical developments have fueled recent interest in the processing-in-pixel-in-memory paradigm for a wide range of visual machine intelligence tasks, including (1) advances in 3D integration technology to enable complex processing inside each pixel in a 3D integrated manner while maintaining pixel density, (2) analog processing circuit techniques for massively parallel low-energy in-pixel computations, and (3) algorithmic techniques to mitigate non-idealities associated with analog processing through hardware-aware training schemes. This article presents a comprehensive technology-circuit-algorithm landscape that connects technology capabilities, circuit design strategies, and algorithmic optimizations to power, performance, area, bandwidth reduction, and application-level accuracy metrics. We present our results using a comprehensive co-design framework incorporating hardware and algorithmic optimizations for various complex real-life visual intelligence tasks mapped onto our P2M paradigm

    Accelerating and pruning CNNs for semantic segmentation on FPGA

    Get PDF
    Semantic segmentation is one of the popular tasks in computer vision, providing pixel-wise annotations for scene understanding. However, segmentation-based convolutional neural networks require tremendous computational power. In this work, a fully-pipelined hardware accelerator with support for dilated convolution is introduced, which cuts down the redundant zero multiplications. Furthermore, we propose a genetic algorithm based automated channel pruning technique to jointly optimize computational complexity and model accuracy. Finally, hardware heuristics and an accurate model of the custom accelerator design enable a hardware-aware pruning framework. We achieve 2.44X lower latency with minimal degradation in semantic prediction quality (−1.98 pp lower mean intersection over union) compared to the baseline DeepLabV3+ model, evaluated on an Arria-10 FPGA. The binary files of the FPGA design, baseline and pruned models can be found in github.com/pierpaolomori/SemanticSegmentationFPGA

    Searching for neutrino transients below 1 TeV with IceCube

    Get PDF

    Observation of Cosmic Ray Anisotropy with Nine Years of IceCube Data

    Get PDF
    corecore